74VCXH16373 Low Voltage 16-Bit Transparent Latch with Bushold

74VCXH16373 Low Voltage 16-Bit Transparent Latch with Bushold

General Description

FAIRCHILD

SEMICONDUCTOR

The VCXH16373 contains sixteen non-inverting latches with 3-STATE outputs and is intended for bus oriented applications. The device is byte controlled. The flip-flops appear to be transparent to the data when the Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup time is latched. Data appears on the bus when the Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH, the outputs are in a high impedance state.

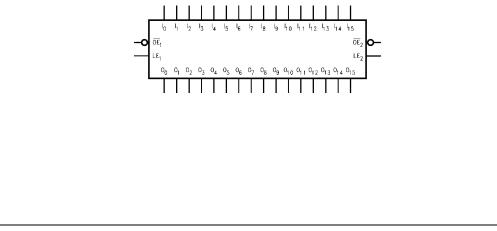
The VCXH16373 data inputs include active bushold circuitry, eliminating the need for external pull-up resistors to hold unused or floating data inputs at a valid logic level.

The 74VCXH16373 is designed for low voltage (1.4V to 3.6V) V_{CC} applications with output compatibility up to 3.6V.

The 74VCXH16373 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

Features

- 1.4V to 3.6V V_{CC} supply operation
- 3.6V tolerant control inputs and outputs
- Bushold on data inputs eliminates the need for external pull-up/pull-down resistors
- t_{PD} (I_n to O_n)
- 3.0 ns max for 3.0V to 3.6V $\rm V_{CC}$
- Static Drive (I_{OH}/I_{OL})
- ±24 mA @ 3.0V V_{CC}
- Uses patented noise/EMI reduction circuitry
- Latch-up performance exceeds 300 mA
 ESD performance: Human body model > 2000V
- Machine model > 200V ■ Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA) (Preliminary)


Ordering Code:

Order Number	Package Number	Package Description
74VCXH16373GX (Note 1)		54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide [TAPE and REEL]
74VCXH16373MTD (Note 2)	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Note 1: BGA package available in Tape and Reel only.

Note 2: Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbol

74VCXH16373

Connection Diagrams

Pin As	signment for TS	SOP
	1 48	— LE ₁
°° —	2 47	— I ₀
o ₁ —	3 46	— կ
GND —	4 45	— GND
0 ₂ —	5 44	— I ₂
o ₃ —	6 43	— I ₃
v _{cc} —	7 42	– v _{cc}
0 ₄ —	8 41	— I ₄
0 ₅ —	9 40	— I ₅
GND —	10 39	— GND
° ₆ —	11 38	— I ₆
0 ₇ —	12 37	— ŀ7
0 ₈ —	13 36	— ۱ ₈
0 ₉ —	14 35	— I ₉
GND —	15 34	— GND
0 ₁₀ —	16 33	— I ₁₀
0 ₁₁ —	17 32	— I ₁₁
v _{cc} —	18 31	– v _{cc}
0 ₁₂ —	19 30	— I ₁₂
0 ₁₃ —	20 29	— 4 ₁₃
GND —	21 28	— GND
0 ₁₄ —	22 27	— I ₁₄
0 ₁₅	23 26	— 4 ₁₅
0e2 -	24 25	— LE ₂
JHGFEDCBA		6 0000
(Top Thru View)	

Pin Descriptions

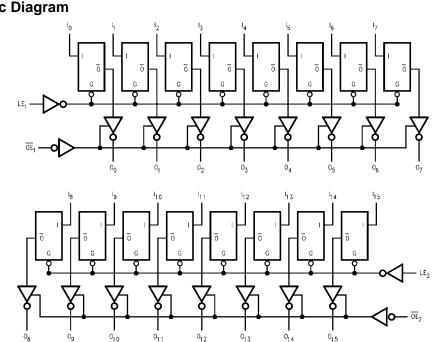
Pin Names	Description
0E _n	Output Enable Input (Active LOW)
LEn	Latch Enable Input
I ₀ -I ₁₅	Bushold Inputs
O ₀ -O ₁₅	Outputs
NC	No Connect

FBGA Pin Assignments

	1	2	3	4	5	6
Α	O ₀	NC	OE ₁	LE ₁	NC	I ₀
В	0 ₂	0 ₁	NC	NC	I ₁	l ₂
С	O ₄	O ₃	V _{CC}	V _{CC}	l ₃	I ₄
D	0 ₆	0 ₅	GND	GND	1 ₅	I ₆
E	0 ₈	0 ₇	GND	GND	۱ ₇	۱ ₈
F	O ₁₀	O ₉	GND	GND	l ₉	I ₁₀
G	0 ₁₂	0 ₁₁	V _{CC}	V _{CC}	I ₁₁	I ₁₂
н	0 ₁₄	0 ₁₃	NC	NC	I ₁₃	I ₁₄
J	0 ₁₅	NC	OE ₂	LE_2	NC	I ₁₅

Truth Tables

	Inputs		Outputs
LE ₁	OE ₁	I ₀ —I ₇	0 ₀ –0 ₇
Х	Н	Х	Z
н	L	L	L
н	L	н	н
L	L	Х	O ₀
	Inputs		Outputs
LE ₂	$\frac{\text{Inputs}}{\text{OE}_2}$	I ₈ —I ₁₅	Outputs O ₈ –O ₁₅
LE ₂		I₈-I₁₅ X	-
_	OE ₂		0 ₈ -0 ₁₅
x	OE ₂	Х	0 ₈ -0 ₁₅ Z


Functional Description

The 74VCXH16373 contains sixteen edge D-type latches with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 16-bit operation. The following description applies to each byte. When the Latch Enable (LE_n) input is HIGH, data on the ${\rm I}_{\rm n}$ enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time

information that was present on the I inputs a setup time preceding the HIGH-to-LOW transition on LE_n. The 3-STATE outputs are controlled by the Output Enable (\overline{OE}_n) input. When \overline{OE}_n is LOW the standard outputs are in the 2-state mode. When $\overline{\text{OE}}_n$ is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

its I input changes. When LE_n is LOW, the latches store

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

74VCXH16373

Absolute Maximum Ratings(Note 3)

l			Co
	Supply Voltage (V _{CC})	-0.5V to +4.6V	00
	DC Input Voltage (VI)	-0.5V to 4.6V	Po
	Output Voltage (V _O)		(
	Outputs 3-STATED	-0.5V to +4.6V	Inp
	Outputs Active (Note 4)	–0.5V to V_CC +0.5V	Ou
	DC Input Diode Current (I _{IK}) $V_I < 0V$	–50 mA	(
	DC Output Diode Current (I _{OK})		(
	V _O < 0V	–50 mA	Ou
	$V_{O} > V_{CC}$	+50 mA	١
	DC Output Source/Sink Current		١
	(I _{OH} /I _{OL})	±50 mA	١
	DC V _{CC} or GND Current per		١
	Supply Pin (I _{CC} or GND)	±100 mA	Fre
	Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	Mir
L			

Recommended Operating onditions (Note 5) ower Supply Operating 1.4V to 3.6V -0.3V to +3.6V put Voltage utput Voltage (V_O) 0V to V_{CC} Output in Active States Output in "OFF" State 0.0V to 3.6V utput Current in I_{OH}/I_{OL} $V_{CC} = 3.0V$ to 3.6V ±24 mA $V_{CC} = 2.3V$ to 2.7V ±18 mA $V_{CC} = 1.65V \text{ to } 2.3V$ ±6 mA $V_{CC} = 1.4V$ to 1.6V ±2 mA ree Air Operating Temperature (T_A) $-40^{\circ}C$ to $+85^{\circ}C$ linimum Input Edge Rate (Δt/ΔV) $V_{\text{IN}} = 0.8 \text{V}$ to 2.0V, $V_{\text{CC}} = 3.0 \text{V}$ 10 ns/V

Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 4: I_O Absolute Maximum Rating must be observed.

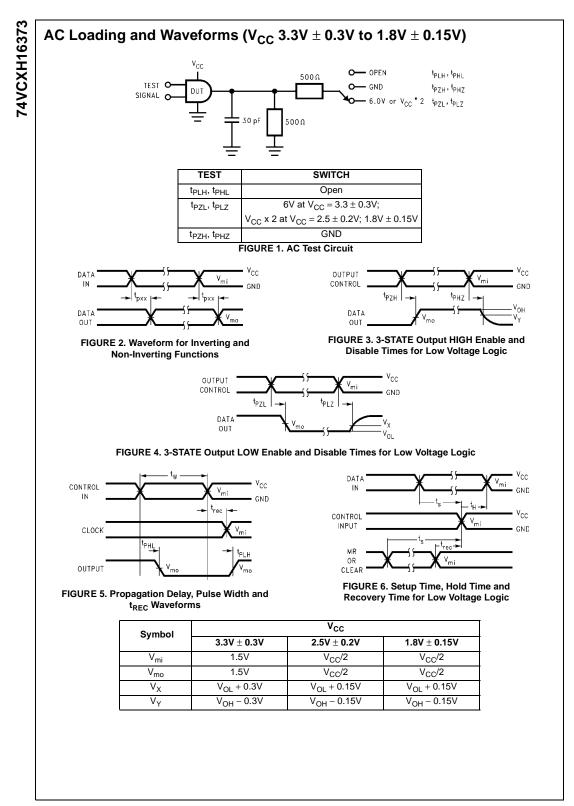
Note 5: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.7 – 3.6	2.0		
			2.3 – 2.7	1.6		V
			1.65 – 2.3	$0.65 \ \mathrm{x} \ \mathrm{V_{CC}}$		v
			1.4 – 1.6	$0.65 \ \mathrm{x} \ \mathrm{V_{CC}}$		
V _{IL}	LOW Level Input Voltage		2.7 – 3.6		0.8	
			2.3 – 2.7		0.7	V
			1.65 – 2.3		$0.35 \times V_{\rm CC}$	v
			1.4 – 1.6		$0.35 \times V_{CC}$	
V _{ОН}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7 – 3.6	V _{CC} - 0.2		
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		
		I _{OH} = -18 mA	3.0	2.4		
		I _{OH} = -24 mA	3.0	2.2		
		$I_{OH} = -100 \ \mu A$	2.3 – 2.7	V _{CC} - 0.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2.0		v
		$I_{OH} = -12 \text{ mA}$	2.3	1.8		v
		I _{OH} = -18 mA	2.3	1.7		
		$I_{OH} = -100 \ \mu A$	1.65 – 2.3	V _{CC} - 0.2		
		$I_{OH} = -6 \text{ mA}$	1.65	1.25		
		$I_{OH} = -100 \ \mu A$	1.4 – 1.6	V _{CC} - 0.2		
		$I_{OH} = -2 \text{ mA}$	1.4	1.05		

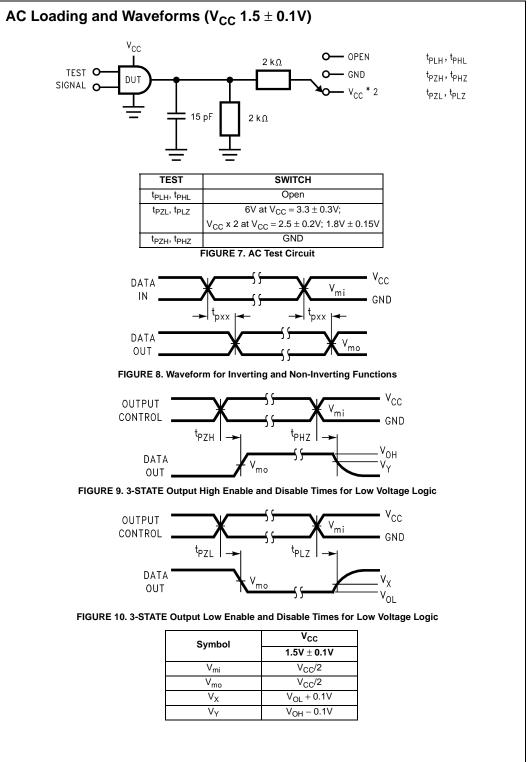
Symbol	Parameter		Conditions	V _{CC} (V)	Min	Max	Units
V _{OL}	LOW Level Output Voltage		I _{OL} = 100 μA	2.7-3.6		0.2	
			$I_{OL} = 12 \text{ mA}$	2.7		0.4	
			$I_{OL} = 18 \text{ mA}$	3.0		0.4	
			$I_{OL} = 24 \text{ mA}$	3.0		0.55	
			I _{OL} = 100 μA	2.3 - 2.7		0.2	ł
			$I_{OL} = 12 \text{ mA}$	2.3		0.4	V
			I _{OL} = 18 mA	2.3		0.6	
			I _{OL} = 100 μA	1.65 – 2.3		0.2	ł
			$I_{OL} = 6 \text{ mA}$	1.65		0.3	
			I _{OL} = 100 μA	1.4 – 1.6		0.2	İ
			$I_{OL} = 2 \text{ mA}$	1.4		0.35	
l _l	Input Leakage Current	Control Pins	$0 \le V_I \le 3.6V$	1.4 – 3.6		±5.0	μΑ
		Data Pins	$V_I = V_{CC}$ or GND	1.4 - 3.6		±5.0	μΑ
I _{I(HOLD)}	Bushold Input Minimum	•	$V_{IN} = 0.8V$	3.0	75		
	Drive Hold Current		$V_{IN} = 2.0V$	3.0	-75		
			$V_{IN} = 0.7V$	2.3	45		
			$V_{IN} = 1.6V$	2.3	-45		μA
			$V_{IN} = 0.57V$	1.65	25		İ
			V _{IN} = 1.07V	1.65	-25		
I _{I(OD)}	Bushold Input Over-Drive		(Note 6)	3.6	450		
	Current to Change State		(Note 7)	3.6	-450		
			(Note 6)	2.7	300		μΑ
			(Note 7)	2.7	-300		μΑ
			(Note 6)	1.95	200		1
				1.95	-200		
I _{OZ}	3-STATE Output Leakage		$0 \le V_O \le 3.6V$	2.7-3.6		±10	μA
			$V_I = V_{IH} \text{ or } V_{IL}$	2.7-3.0		10	μΛ
I _{OFF}	Power-OFF Leakage Current		$0 \le (V_O) \le 3.6V$	0		10	μΑ
I _{CC}	Quiescent Supply Current		$V_I = V_{CC}$ or GND	1.4 – 3.6		20	μA
			$V_{CC} \leq (V_O) \leq 3.6 V$ (Note 8)	1.4 – 3.6		±20	μι
Δl _{CC}	Increase in I _{CC} per Input		$V_{IH} = V_{CC} - 0.6V$	2.7 – 3.6		750	μΑ

Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

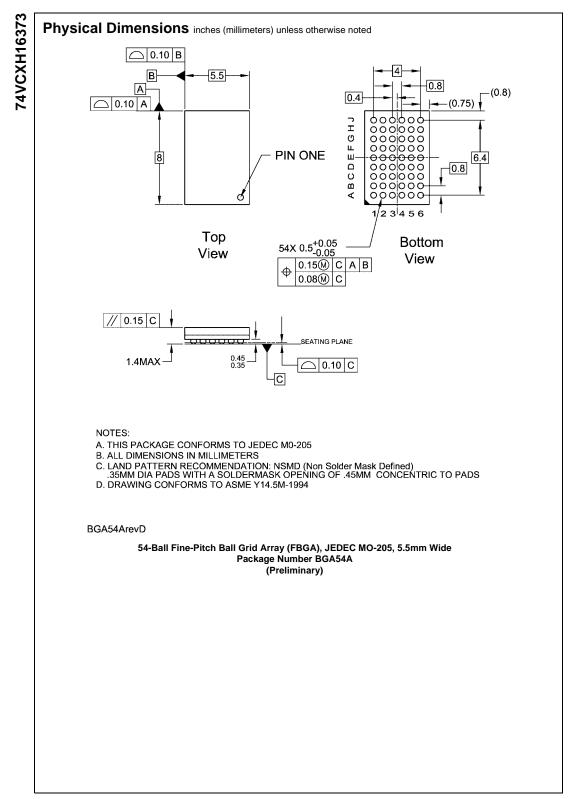

Note 8: Outputs disabled or 3-STATE only.

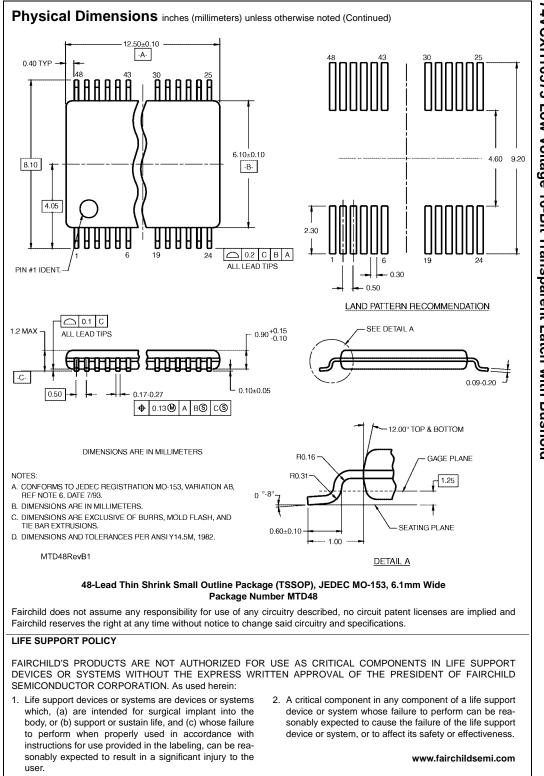
Symbol	Parameter	Conditions	v _{cc}	T _A = -40°	C to +85°C	Units	F	
Cymber			(V)			onito	Ν	
t _{PHL} , t _{PLH}	Propagation Delay	$C_L = 30 \text{ pF}, \text{ R}_L = 500\Omega$	3.3 ± 0.3	0.8	3.0		F	
	LE to O _n		2.5 ± 0.2	1.0	3.9	ns	1	
			1.8 ± 0.15	1.5	7.8			
		$C_L = 15 \text{ pF}, \text{ R}_L = 2.5\Omega$	1.5 ± 0.1	1.0	15.6	ns	F	
t _{PHL} , t _{PLH}	Propagation Delay	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	0.8	3.0			
	I _n to O _n		2.5 ± 0.2	1.0	3.4	ns	F	
			1.8 ± 0.15	1.5	6.8			
		$C_L = 15 \text{ pF}, \text{ R}_L = 2.5 \Omega$	1.5 ± 0.1	1.0	13.6	ns	F	
t _{PZL} , t _{PZH}	Output Enable Time	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	0.8	3.5		+	
			2.5 ± 0.2	1.0	4.6	ns	F	
			1.8 ± 0.15	1.5	9.2			
		$C_L = 15 \text{ pF}, R_L = 2.5\Omega$	1.5 ± 0.1	1.0	18.4	ns	F 7	
t _{PLZ} , t _{PHZ}	Output Disable Time	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	0.8	3.5			+
			2.5 ± 0.2	1.0	3.8	ns	F	
			1.8 ± 0.15	1.5	6.8			
		$C_L = 15 \text{ pF}, R_L = 2.5\Omega$	1.5 ± 0.1	1.0	13.6	ns	F 7	
t _S	Setup Time	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	1.5			Ť,	
			2.5 ± 0.2	1.5		ns	F	
			1.8 ± 0.15	2.5				
		$C_L = 15 \text{ pF}, \text{ R}_L = 2.5 \Omega$	1.5 ± 0.1	3.0		ns	F	
t _H	Hold Time	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 1.0	1.0			T.	
			2.5 ± 0.2	1.0		ns	F	
			1.8 ± 0.15	1.0				
		$C_L = 15 \text{ pF}, R_L = 2.5\Omega$	1.5 ± 0.1	1.2		ns	F	
t _W	Pulse Width	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3	1.5			Ť.	
			2.5 ± 0.2	1.5		ns	F	
			1.8 ± 0.15	4.0				
		$C_L = 15 \text{ pF}, R_L = 2.5\Omega$	1.5 ± 0.1	4.0		ns	F	
t _{OSHL}	Output to Output Skew	$C_L = 30 \text{ pF}, R_L = 500\Omega$	3.3 ± 0.3		0.5		+	
t _{OSLH}	(Note 10)		2.5 ± 0.2		0.5	ns		
			1.8 ± 0.15		0.75			
		$C_L = 15 \text{ pF}, \text{ R}_L = 2.5\Omega$	1.5 ± 0.1		1.5	ns	T	
Note 10: Sk	ew is defined as the absolute valu	D ps to the AC maximum specification. The of the difference between the actual p in the same direction, either HIGH-to-LC				he same dev	vice.	

Cumhal	Parameter Conditions	v _{cc}	$T_A = +25^{\circ}C$	Units	
Symbol Param	Parameter	Conditions	(V)	Typical	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	0.25	
			2.5	0.6	V
			3.3	0.8	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 30 \text{ pF}, \text{ V}_{IH} = \text{V}_{CC}, \text{ V}_{IL} = 0 \text{V}$	1.8	-0.25	
			2.5	-0.6	V
			3.3	-0.8	
V _{OHV}	Quiet Output Dynamic Valley V _{OH}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	1.5	
			2.5	1.9	V
			3.3	2.2	


Capacitance

Symbol	Parameter	Conditions	T _A = +25°C Typical	Units
CIN	Input Capacitance	$V_{CC} = 1.8V$, 2.5V or 3.3V, $V_I = 0V$ or V_{CC}	6	pF
COUT	Output Capacitance	$V_I = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	7	pF
C _{PD}		V _I = 0V or V _{CC} , f = 10 MHz, V _{CC} = 1.8V, 2.5V or 3.3V	20	pF




www.fairchildsemi.com

8

74VCXH16373

11